Polycystin-1 regulates STAT activity by a dual mechanism.
نویسندگان
چکیده
Mutations in polycystin-1 (PC1) lead to autosomal-dominant polycystic kidney disease (ADPKD), a leading cause of renal failure for which no treatment is available. PC1 is an integral membrane protein, which has been implicated in the regulation of multiple signaling pathways including the JAK/STAT pathway. Here we show that membrane-anchored PC1 activates STAT3 in a JAK2-dependent manner, leading to tyrosine phosphorylation and transcriptional activity. The C-terminal cytoplasmic tail of PC1 can undergo proteolytic cleavage and nuclear translocation. Tail-cleavage abolishes the ability of PC1 to directly activate STAT3 but the cleaved PC1 tail now coactivates STAT3 in a mechanism requiring STAT phosphorylation by cytokines or growth factors. This leads to an exaggerated cytokine response. Hence, PC1 can regulate STAT activity by a dual mechanism. In ADPKD kidneys PC1 tail fragments are overexpressed, including a unique ∼15-kDa fragment (P15). STAT3 is strongly activated in cyst-lining epithelial cells in human ADPKD, and orthologous and nonorthologous polycystic mouse models. STAT3 is also activated in developing, postnatal kidneys but inactivated in adult kidneys. These results indicate that STAT3 signaling is regulated by PC1 and is a driving factor for renal epithelial proliferation during normal renal development and during cyst growth.
منابع مشابه
Mutant polycystin-2 induces proliferation in primary rat tubular epithelial cells in a STAT-1/p21-independent fashion accompanied instead by alterations in expression of p57KIP2 and Cdk2
BACKGROUND Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that destroy the kidney architecture resulting in end-stage renal failure. Mutations in genes PKD1 and PKD2 account for nearly all cases of ADPKD. Increased cell proliferation is one of the key features of the disease. Several studies indicated that polycystin-1 regul...
متن کاملRegulation of STATs by polycystin-1 and their role in polycystic kidney disease
Autosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disease caused by mutations in the gene coding for polycystin-1 (PC1). PC1 can regulate STAT transcription factors by a novel, dual mechanism. STAT3 and STAT6 are aberrantly activated in renal cysts. Genetic and pharmacological approaches to inhibit STAT3 or STAT6 have led to promising results in ADPKD mouse models. Here, ...
متن کاملPKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2
Autosomal dominant polycystic kidney disease is characterized by cyst formation in the kidney and other organs and results from mutations of PKD1 or PKD2. Previous studies suggest that their gene products have an important role in growth regulation. We now show that expression of polycystin-1 activates the JAK-STAT pathway, thereby upregulating p21(waf1) and inducing cell cycle arrest in G0/G1....
متن کاملPhosphoinositide 3-Kinase-C2α Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation.
Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2α (PI3K-C2α) in renal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2α r...
متن کاملCarboxy Terminal Tail of Polycystin-1 Regulates Localization of TSC2 to Repress mTOR
Autosomal dominant polycystic kidney disease (ADPKD) is a commonly inherited renal disorder caused by defects in the PKD1 or PKD2 genes. ADPKD is associated with significant morbidity, and is a major underlying cause of end-stage renal failure (ESRF). Commonly, treatment options are limited to the management of hypertension, cardiovascular risk factors, dialysis, and transplantation when ESRF d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 19 شماره
صفحات -
تاریخ انتشار 2011